| I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical | |-------------|---------------------|--|--------------------|------------------------------------|----------------| | , | | | , , | | appraisal of | | | | | | | study quality | | Maranzano | Randomized | Eligibility criteria | Radiotherapy: | Pain | Risk of bias: | | et al, 2005 | controlled trial | - MSCC confirmed by MRI or CT in patients with | Short course | Responders : | low | | | Funding/Col: no | progressive neoplastic disease. | (8Gyx2) | Short course RT: 80/142 (56%) | | | | Col declared, | - no criteria indicating a primary surgical approach | n=142 | Split course RT: 79/134 (59%) | No selection | | | funding not | - a short life expectancy (≤6 months) | | No significant differences | bias: one-to- | | | reported | - provided informed consent. | Radiotherapy: | between | one | | | Setting: Italy | | Split course | the two interventions. | randomization | | | Sample size | A priori patient characteristics: | (5Gy x3; 3Gy | | allocation by | | | :N=300, of which | Age range:30-89, female 31%, Karnofsky | x5) n=134 | Mobility | centralized | | | 276 assessable | performance status: ≤40 31%, 50-70 52%, 80-100 | | Responders: | registration | | | Duration: inclusion | 17%; Back pain 95%, not walking 33%, abnormal | | Short course RT: 97/142 (68%) | | | | Feb 1998-Nov | sphincter control 11% | | Split course RT: 95/134 (71%) | No blinding | | | 2002. Median | | | No significant differences | reported | | | follow -up: 33 | Group comparability | | between | | | | months (range 4 | Median age 66 vs. 68; back pain 96%vs. 94%; not | | the two interventions. | Clear | | | to 61 months) | walking 34% vs. 32% | | | definitions of | | | | | | Respons duration | outcome | | | | | | median duration of improvement: | | | | | | | 3.5 months for both interventions. | Drop outs: 24 | | | | | | | (LTFU and | | | | | | Neurological respons | early death | | | | | | Not reported | balanced in | | | | | | | both | | | | | | | interventions) | | | | | | Toxicity | | | | | | | Esophagitis: | | | | | | | Short course RT: 1/142 | | | | | | | Split course RT: 2/134 | | | | | | | Diarrhea grade 3: | | | | | | | Short course RT: 2/142 | | | | | | | Split course RT: 2/134 | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of study quality | |------------|-----------|-----------------------------|--------------------|--|---| | | | | | No difference in toxicity between the two interventions. | | | | | | | Progression Free survival Not reported | | | | | | | Bladder function
Responders:
Short course RT: 128/142 (90%) | | | | | | | Split course RT: 119/134 (89%) No significant differences between the two interventions. | | | | | | | THE THE INCIDENCE. | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical | |-------------|---------------------|---|----------------------------------|---------------------------------|----------------| | | | | | | appraisal of | | | | | | | study quality | | Maranzano | Randomized | Inclusion criteria: | Radiotherapy | Pain | Risk of Bias: | | et al, 2009 | controlled trial | - MSCC confirmed by MRI or CT in patients with | Short course | Responders: | Low | | | Source of funding: | progressive neoplastic disease. | 8Gy x2 n=150 | Short course RT: 80/150 (53%) | | | | no Col declared, | - no criteria indicating a primary surgical | | Single dose RT: 80/153 (52%) | Selection | | | funding not | approach | Radiotherapy | No significant differences | bias: 1:1 | | | reported | - a short life expectancy (<_6 months) | Single dose | between | randomisation | | | Setting: 13 | - provided informed consent. | 8Gy n=153 | the two interventions. | and allocation | | | Radiation | | | | by centralized | | | Oncology Italian | A priori patient characteristics: | | Mobility | registration | | | Centres | Age range:33-87, female 35%, Karnofsky | | Responders: | | | | Sample size: | performance status: ≤40 15%, 50-70 60%, 80-100 | | Short course RT: 104/150 (69%) | Blinding: not | | | N=327, of which | 25%; Back pain 89%, not walking 26%, abnormal | | Single dose RT: 95/153 (62%) | reported | | | 303 assessable | sphincter control 14% | | No significant differences | | | | Duration: inclusion | | | between | 21/321 LTFU | | | Nov 2002-Sept | Group comparability | | the two interventions. | or early death | | | 2007. Median | Median age 67 vs. 67; back pain 89%vs. 89%; not | | | (balanced | | | overall survival: 4 | walking 27% vs. 25% | | Respons duration | over the two | | | months. | | | Median duration of improvement: | interventions) | | | | | | 5 months for both interventions | | | | | | | Toxicity | | | | | | | Esophagitis: | | | | | | | Short course RT: 2/150 (1%) | | | | | | | Single dose RT: 0 | | | | | | | Diarrhea grade 1-2: | | | | | | | Short course RT: 6 (2%) | | | | | | | Single dose RT: 0 | | | | | | | Vomiting grade 3: | | | | | | | Short course: 1/150 (1%) | | | | | | | Single dose: 0 | | | | | | | | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of study quality | |-----------------------------------|---|--|-------------------------------|--|--| | | | | | Neurological respons Not reported Progression free survival Not reported Bladder function Responders: Short course RT: 131/150 (87%) Single dose RT: 130/153 (85%) No significant differences between the two interventions. | | | Van der
Linden et
al. 2005, | Randomized controlled trial Source of funding: | Inclusion criteria: - Max pain score during preceding week of at least 2 on a 11-point pain scale | Radiotherapy: 8Gy n= 164 | Pain No differences in respons between the two interventions | Risk of bias:
High | | 2004,
Steenland
et al. 1999 | Health Care Insurance Board; no Col reported • Setting: | - the bone metastases: area that could be encompassed in a single radiation treatment field A priori patient characteristics: Mean age 66 Age range:34-90, female 47%, | Radiotherapy 4Gy x6 n=178 | (p=0.52); overall 73% responders Mobility Not reported | Selection
bias: no clear
description
randomisation | | | Netherlands Sample size: N=342 patients with spinal metastases out of | Karnofsky performance status: ≤40 8%, 50-70 44%, 80-100 48%; • Group comparability No data | | Respons duration Not reported Toxicity | process, non-
randomized
compared to
randomized
patients: no | | | 1157 randomized patients • Duration: inclusion | | | Reported, but no comparison made | difference. Blinding: not | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of study quality | |---------------------|---|--|---|---|---| | | March 1996 –
Sept 1998 | | | Neurological respons Not reported Progression Free survival Not reported | reported LTFU # not reported | | | | | | Bladder function Not reported | | | Rades et
al 2004 | Prospective cohort studySource of funding: | Inclusion criteria: -motor dysfunction of the lower extremities - no previous surgery or RT of the spinal cord | Radiotherapy: 30 Gy 10 x in 2 weeks | Pain Not reported | Risk of bias:
low | | | no Col or funding reported Setting: | concerned, no chemotherapy and dexamethasone treatment during RT - diagnosis of MSCC confirmed by MRI or CT | n=110 Radiotherapy | Mobility - Ambulatory directly after RT (p=0.708) | Prospective inclusion | | | Setting.multicentreSample size:N=214 | A priori patient characteristics: Median age: 63 (range 24-87); female: 49% Group comparability | Radiotherapy 40 Gy 20x in 4 weeks n=104 | 30 Gy/10 fr 66/110 (60%)
40 Gy/20 fr 67/104 (64%)
- Ambulatory 3 mos after RT | No blinding reported | | | Duration: April 2000-sept 2003. Follow up 6 months. | Median Age: 64 vs 62; female: 45% vs.52%; ambulatory before RT: 53% vs. 56% | | (p=0.791) 30 Gy/10 fr 63/93 (68%) 40 Gy/20 fr 65/91 (71%) - Ambulatory 6 mos after | Confounders taken into account | | | | | | RT(p=0.777)
30 Gy/10 fr 57/76 (75%)
40 Gy/20 fr 57/72 (79%) | Clear definitions of outcomes | | | | | | Motor function is described at Neurological respons. | Drop outs:
3/214 LTFU | | | | | | Respons duration Not reported | | | | | | | Neurological respons | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical | |------------|-----------|-----------------------------|--------------------|------------------------------------|---------------| | | | | | | appraisal of | | | | | | | study quality | | | | | | - Motor function directly after RT | , , | | | | | | (p=0.799) | | | | | | | improvement | | | | | | | 30 Gy/10 fr 47/110 (43%) | | | | | | | 40 Gy/20 fr 43/104 (41%) | | | | | | | No change | | | | | | | 30 Gy/10 fr 33/110 (30%) | | | | | | | 40 Gy/20 fr 37/104 (36%) | | | | | | | - Motor function 3 mos after RT | | | | | | | (p= 0.580) | | | | | | | improvement | | | | | | | 30 Gy/10 fr 46/93 (49%) | | | | | | | 40 Gy/20 fr 42/91 (46%) | | | | | | | No change | | | | | | | 30 Gy/10 fr 26/93 (28%) | | | | | | | 40 Gy/20 fr 33/91 (36%) | | | | | | | - Motor function 6 mos after | | | | | | | RT(p=0.928) | | | | | | | improvement | | | | | | | 30 Gy/10 fr 42/76 (55%) | | | | | | | 40 Gy/20 fr 37/72 (51%) | | | | | | | No change | | | | | | | 30 Gy/10 fr 24/76 (32%) | | | | | | | 40 Gy/20 fr 26/72 (36%) | | | | | | | | | | | | | | Toxicity | | | | | | | No relevant acute or late RT- | | | | | | | related toxicity | | | | | | | | | | | | | | Progression free survival | | | | | | | Not reported | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of study quality | |------------------|--|--|--|---|---| | | | | | Bladder function Not reported | | | Rades et al 2005 | Retrospective cohort study Source of funding: no Col and no funding reported Setting: Not reported (probably multicentre) Sample size:N=1304 Duration: Jan 1992-Dec 2003 follow up 6 months. | Inclusion criteria: motor dysfunction of the lower extremities no surgery or RT, no concurrent chemotherapy, survival at least 1 month after RT MSCC confirmed by MRI or CT A priori patients characteristics: Median age: 63 (range 23-89), female: 42% Group comparability: Age<66 47% vs49% vs 51% vs 55% vs 56% Female 36% vs 41% vs 42% vs 42% vs 46% Ambulatory before RT: 65% vs 63% vs 57% vs 61% vs 70% | Radiotherapy 1x 8 Gy in 1 day n=261 Radiotherapy 5x 4Gy in 1 week n=279 Radiotherapy 10x 3 Gy n=274 Radiotherapy 15x 2.5 Gy n=233 Radiotherapy 20x 2Gy n=257 | Pain Not reported Mobility Regain walking ability: 1x 8Gy 23/91 (25%) 5x 4Gy 27/104 (26%) 10x 3Gy 31/118 (26%) 15x 2.5Gy 22/90 (24%) 20x 2Gy 23/76 (30%) P=0.96 Motor function is described at Neurological respons. Respons duration In-field recurrences: 1x 8Gy 34/91 (37%) 5x 4Gy 33/104 (32%) 10x 3Gy 12/118 (10%) 15x 2.5Gy 10/90 (11%) 20x 2Gy 12/76 (16%) Significantly more recurrences after 1x 8Gy and 5x 4Gy compared to 10x 3Gy, 15x 2.5Gy and 20x 2Gy (P<.001). | Risk of bias: high Retrospective data collection, not all relevant data available. No blinding reported Drop outs: no reported/ not taken into analysis? | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of | |---------------------|---|---|---|--|---------------------------| | | | | | No significant difference between the five groups regarding improvement, no change and deterioration of motor function (no quantitative data provided, only available in figure) Toxicity No relevant acute and late RT-related toxicity Progression Free survival Not reported Bladder function | study quality | | | | | | Not reported | | | Rades et
al 2009 | Prospective cohort studySource of funding: | Inclusion criteria: MESCC (confirmed by MRI) of the thoracic or lumbar spine, no previous surgery or RT | Radiotherapy Short course: 8 Gy in 1 day, | Pain Not reported | Risk of bias:
High | | | no Col or funding | A priori patients characteristics: | 5x 4 Gy in | Mobility | Selection | | | reported | Not reported | 1week n=114 | Motor function is described at | bias: | | | Setting: The | Group comparability: | | Neurological respons. | prospective | | | Netherlands and | Age <=66: 46% vs 53%; female: 32% vs 36%; | Radiotherapy | | inclusion, one | | | Germany | ambulatory before RT: 39% vs 42%. | Long course: | Respons duration | cohort | | | Sample size: | | 10x 3Gy in | MSCC recurrence after RT: | Netherlands, | | | N=231 • Duration: Inclusion | | 2weeks 15x
25Gy in 3 | Short course: 20/114 (18%) median 5 mos. | one cohort
Germany | | | Duration: Inclusion Jan 2006 – aug | | weeks 20x | Long course: 10/117 (9%) | Germany | | | 2007. Median | | 2Gy in4 | median 7.5 mos. | No blinding | | | follow up: 12 | | weeks n=117 | modian 7.0 mos. | reported | | | months (range 2- | | Wooke Hall | Improved local control, defined | . oponioa | | appraisal of study quality. 20 months) as a lack of local recurrence of MSCC within the irradiated spinal area after RT, significantly associated with long course RT at 12 months: Short course: 62 /102 (61%) Long course: 64 /109 (77%) Long course: 64 /109 (77%) RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 33/117 (30%) No change in motor function Short course 70/114 (61%) Long course 70/114 (61%) Long course 70/114 (61%) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival rate (%) at 6 months: | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical | |---|------------|------------|-----------------------------|--------------------|-----------------------------------|----------------| | as a lack of local recurrence of MSCC within the irradiated spiral area after RT, significantly associated with long course RT at 12 months: Short course: 62 /102 (61%) Long course: 84 /109 (77%) RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 70/114 (61%) Long course 70/114 (61%) Long course 70/114 (61%) And ifference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival at 6 months: | | | | | | appraisal of | | MSCC within the irradiated spinal area after RT, significantly associated with long course RT at 12 months: Short course: 62 /102 (61%) Long course: 62 /102 (61%) Long course: 84 /109 (77%) RR=1.49 (95% C1 1.03-2.24) (p=0.035). Prop outs: 2/231 LTFU Neurological respons Better motor function Short course 32/114 (28%) Long course 32/114 (28%) Long course 72/114 (61%) Long course 72/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival At 6 months: | | | | | | study quality | | area after RT, significantly associated with long course RT at 12 months: Short course: 62 /102 (61%) Long course: 84 /109 (77%) RR=1.49 (95% Cl 1.03-2.24) (p=0.035). Drop outs: 2/231 LTFU Neurological respons Better motor function Short course 32/117 (30%) No change in motor function Short course 32/117 (30%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | 20 months) | | | as a lack of local recurrence of | Confounders | | associated with long course RT at 12 months: Short course: 62 /102 (61%) definitions of outcomes RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 72/117 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival rate (%) at 6 months: | | | | | MSCC within the irradiated spinal | taken into | | at 12 months: Short course: 62 /102 (61%) Long course: 84 /109 (77%) RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | area after RT, significantly | account | | Short course: 62 /102 (61%) definitions of Long course: 84 /109 (77%) RR=-1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival at 6 months: | | | | | associated with long course RT | | | Long course: 84 /109 (77%) RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival rate (%) at 6 months: | | | | | at 12 months: | Clear | | RR=1.49 (95% CI 1.03-2.24) (p=0.035). Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | Short course: 62 /102 (61%) | definitions of | | (p=0.035). Drop outs: 2/231 LTFU Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival Progression free survival rate (%) at 6 months: | | | | | | outcomes | | Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | RR=1.49 (95% CI 1.03-2.24) | | | Neurological respons Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | (p=0.035). | - | | Better motor function Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | 2/231 LTFU | | Short course 32/114 (28%) Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | Long course 35/117 (30%) No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | No change in motor function Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival at 6 months: | | | | | | | | Short course 70/114 (61%) Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | Long course 72/117 (62%) No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | = | | | No difference between two interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | interventions (multivariate analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | analysis: p=0.61) Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | Toxicity Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | · · | | | Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | analysis: p=0.61) | | | Acute toxicity was mild or absent in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | Tantata. | | | in all patients. Late radiation toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | • | | | toxicity such as myelopathy did not occur. Progression free survival Progression free survival rate (%) at 6 months: | | | | | • | | | Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | Progression free survival Progression free survival rate (%) at 6 months: | | | | | | | | Progression free survival rate (%) at 6 months: | | | | | not occur. | | | Progression free survival rate (%) at 6 months: | | | | | Progression free survival | | | at 6 months: | | | | | | | | | | | | | | | | Sport courses 67 | | | | | Short course: 67 | | | I Study ID | II Method | III Patient characteristics | IV Intervention(s) | V Results | VII Critical appraisal of study quality | |------------|-----------|-----------------------------|--------------------|--|---| | | | | | Long course: 86 Progression free survival rate (%) at 12 months: Short course: 55 Long course: 72 Significantly better progression free survival at 12 months after long-course than after short course RT RR=1.33 (95% CI 1.01-1.79) (p=0.046). | | | | | | | Bladder function Not reported | | Abbreviations: CoI: conflict of interest; RT=radiotherapy; MSCC= Metastatic Spinal Cord Compression; MRI= Magnetic resonance imaging; CT= computed tomography; PFS=Progression Free Survival; LTFU=lost to follow up; mos= month; fr= fractions; Gy=Grays